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Abstract

The paper is written on the basis of a part of “Analysis of algorithms” course for students

of the Computer science department of the Division of mathematics and mechanics of

Saint Petersburg State University. The example of the computer implementation of the

Gauss method illustrates the difference between the algebraic complexity (the number

of arithmetic operations) of processing integers and the computational complexity which

depends on the length of the input data. A formula which specifies the increase in the

length of matrix coefficients, along with the implementation the Gauss method, is proved.

The problems arising in the processing of large integers associated with “chopping” num-

bers are shown. To overcome the indicated problems, the possibility of using multi-valued

integers is proposed. The upper bounds of the number of steps for processing the multi-

valued integers is shown to coincide with such bounds for a multi-tape Turing machine.
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1. INTRODUCRION

This article is written as a part of “Analysis of algorithms” lecture course for students of the

Computer science department of the Division ofmathematics andmechanics of Saint Petersburg

State University. The idea of including the material presented here in these courses emerged a

long time ago, after N. K. Kosovsky [1] noticed the fact that using the Gauss method with inte-

gers (only multiplication and addition/subtraction operations are allowed), the length of matrix

elements increases exponentially with the number of iterations and, therefore, with the length

of the input data. However, firstly, all textbooks write that the Gauss method is a polynomial

algorithm, and secondly, with an exponential increase in the length of the recorded result, the

algorithm cannot be polynomial. Appeal to specialists in algebra did not give a positive resolu-

tion of this problem: the complexity of an algorithm, in algebra, is considered to be the number

of arithmetic operations performed, not paying attention to the increase in the length of the

recorded result. The people who are engaged in applications are well aware of the overflows

that arise and the “struggle” with them by developing approximate methods.
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2. THE PROBLEMS EMERGING WITH COMPUTER IMPLEMENTATION OF GAUSS METHOD

FOR INTEGER-VALUED MATRICES

Every mathematician knows the following properties of Gauss method for solving a system

of linear equations (as well as for calculation of an inverse matrix): the method is faithful, the

method is unstable. With the implementation to matrices with elements of type real, various
methods of “combating” the instability of themethod are developed. Such an instability is closely

connected with the fact that the division operation in the computer is performed approximately

(moreover, the lower digits of the number are chopped, not rounded).

First-year students learn to implement Gauss method without division (except, may be, di-

vision without a remainder) to integer-valued matrices. In such a case there is no a round-off

error. It would seem that all the elements of the type real of each row of the array can be mul-
tiplied by the common denominator of its elements to get an integer matrix of an equivalent

system. After that, calculations are made without using division.

What happens in most modern computers if the result of an arithmetic operation with num-

bers of type integer does not fit in a cell? The senior digits of a result are “chopped”. That is, in
reality, arithmetic operations with numbers of type integer or longinteger are performed in a
computer modulo 216

or 232
, respectively.

Consider a very simple and illustrative example of solving a system of linear equations with

integer coefficients on a computing device that runs with decimal integers of length 2 (that is,

with integers from the segment [−99,99] modulo+ 100). Upon getting a number which length
exceeds two digits, the result is “chopped” at the expense of higher digits.

1

Solve a system of linear equations with an extended matrix(
99 −73 26
84 15 99

)
.

Obviously, the solution of this system are the numbers 1 and 1. When using the Gauss

method without division, the following actions should be performed: 15 · 99 − 84 · (−73) and
99 ·99−84 ·26.
In the first expression 15 · 99 = 1485 = 85 (mod+ 100), 84 · 73 = 6132 = −68 (mod+ 100),

85+32 = 117 =−83 (mod+ 100).
In the second expression 99 · 99 = 9801 = 1 (mod+ 100), 84 · 26 = 2184 = −16 (mod+100),

1− (−16) = 17 (mod+ 100).
As a result of applying the first iteration of the Gauss method, we obtain an extended matrix(

99 −73 26
−83 17

)
.

Obviously, the numbers 1 and 1 are not a solution of this system.

3. ANALYSIS OF THE INCREASING COEFFICIENTS WITH THE DIRECT USE

OF THE GAUSS METHOD FOR MATRICES WITH INTEGER COEFFICIENTS

Why, when using the Gauss method for matrices with integer coefficients, not apply the algo-

rithm that students are taught in their first year? It’s all about the high increase of the elements

of the matrix in the process of applying the Gauss method. Let’s see how fast they increase.

1
In a real computer, this happens modulo 216

for numbers of type integer or modulo 232
for numbers of type

longinteger.
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It is well known (see, for example, [2]) that the Gauss method requires no more than polyno-

mial (cubic) in the dimension of the matrix number of arithmetic operations. But when estimat-

ing the computational complexity of algorithms, the parameter is not the number of arguments

of the problem, but the length of their recorded output. How many operations does a computer

actually do?

Let an integer n ×m matrix be given, and the length of each of its element does not exceed

M (∥ ai j ∥ ≤ M , i = 1, . . .m, j = 1, . . .n).2 After the first iteration, we have a matrix of the form
a11 a12 . . . a1n

0
... B 1

0

 ,

where elements of the matrix B 1
with indices i = 2, . . .m, j = 2, . . .n are calculated via the for-

mula

b1
i j = ai j a11 −a1 j a j 1.

Taking into account that uponmultiplying integers, their lengths are added (perhapsminus one),

and upon adding (subtracting) the length of the recorded output does not exceed the maximum

of their lengths plus 1, we have

∥ b1
i j ∥ ≤ 2M +1,

i = 2, . . .m, j = 2, . . .n.
After the k-th iteration we have a matrix of the form

a11 a12 . . . a1k . . . a1n

0 b1
22 . . . b1

2k . . . b1
2n

0 0 . . . bk−1
kk . . . bk−1

kn

0 0
... 0 B k

0 0 . . . 0

,

where the elements of the matrix B k
with indices of the elements i = k +1, . . .m, j = k +1, . . .n

are calculated via the formula

bk
i j = bk−1

i j bk−1
kk −bk−1

k j bk−1
j k . (1)

Here, of course, it is necessary to stipulate cases where bk−1
kk = 0, bk−1

ki = 0 for all i = k, . . .m,
but in the “worst” case (in terms of the number of operations performed and the increase of the

lengths of the coefficients) we have

∥ b2
i j ∥ ≤ 2(2M +1)+1 = 4M +3,

∥ b3
i j ∥ ≤ 2(4M +3)+1 = 8M +7,

∥ b4
i j ∥ ≤ 2(8M +7)+1 = 16M +15.

By induction, taking into account the stipulated cases, it is easy to prove that after the direct

passage of the Gauss method for a matrix of rank r

∥ br
i j ∥ ≤ 2r (M +1)−1. (2)

It is known [3] that no algorithm, for which the length of the intermediate data exponentially

depends on the length of the input data, can run in a polynomial number of steps under the

length of the input data. Does it turn out that the Gauss method is not polynomial?

2
Hereinafter, the notation ∥ a ∥ is used for the length of the recorded output of the word (or number) a.
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4. ANALYSIS OF THE INCREASING COEFFICIENTS WITH THE DIRECT USE

OF THE GAUSS METHOD FOR MATRICES

WITH INTEGER COEFFICIENTS USING THE SYLVESTER THEOREM

The Sylvester theorem is formulated in [2]. According to this theorem, for all k ≥ 2 each
element bk

i j (i = k +1, . . . ,m, j = k +1, . . . ,n) can be divided without a remainder by bk−2
(k−1)(k−1)

(here b0
11 = a11).

Thus, when calculating elements bk
i j with k ≥ 2, it is possible, while remaining in the frame-

work of integers, to use the formula

bk
i j =

(bk−1
i j bk−1

kk −bk−1
k j bk−1

j k )

bk−2
(k−1)(k−1)

. (3)

In this case, the length of bk
i j will decrease by at least the length of bk−2

(k−1)(k−1) minus one.

Let us see how the estimate (2) of the length of elements changes after the direct passage of

Gauss method for a matrix of rank r .

For k ≥ 2, i = k +1, . . . ,m, j = k +1, . . . ,n we have

∥ bk
i j ∥ ≤ 2 ∥ bk−1

i j ∥ +1− (∥ bk−2
(k−1)(k−1) ∥ −1) =

2 ∥ bk−1
i j ∥ − ∥ bk−2

(k−1)(k−1) ∥ +2.

As ||ai j || ≤ M we get

∥ b2
i j ∥ ≤ 2(2M +1)−M +2 = 3M +4,

∥ b3
i j ∥ ≤ 2(3M +4)− (2M +1)+2 = 4M +9,

∥ b4
i j ∥ ≤ 2(4M +9)− (3M +4)+2 = 5M +16,

∥ b5
i j ∥ ≤ 2(5M +16)− (4M +9)+2 = 6M +25.

By induction, taking into account the mentioned cases, it is easy to prove that after the direct

passage of the Gauss method for a matrix of rank r

∥ br
i j ∥ ≤ (r +1)M + r 2. (4)

The coefficient r +1 at M is essentially less than 2r
. Moreover, the estimate (4) of the com-

putational complexity of the Gauss method is polynomial under the length of the input matrix,

while the estimate (3) is exponential. So, for example, if M = 16 and the rank of the matrix
r = 10, then the estimate (2) without using the Sylvester theorem gives guaranteed lengths of the
coefficients not exceeding 210 ·16−1 = 16383 ≈ 1024 ·16. Using this theorem, their guaranteed
lengths do not exceed 11 ·16+102 = 276 = 17,25 ·16.

However, it is still a much longer number than that for a value of type integer (binary length
does not exceed 16) or longinteger (binary length does not exceed 32).
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5. THE USE OF MULTI-DIGIT NUMBERS

For processing numbers which lengths do not allow to write them using standard data types,

it is possible to use the so-called multi-digit numbers that can be stored as lists or dynamic ar-

rays. Computations with such numbers are described in detail, for example, in [4]. In this case,

the numbers written in one cell are called macro digits.

In lectures given to students, the author proves estimates for the computational complexity

of arithmetic operations on multi-digit numbers x and y of length n andm, respectively.
When adding (or subtracting) two multi-digit integers, the number of steps isO(max{n,m}),

where a step is the addition of two macro-digits.

Predicates of equality and inequalities of multi-digit integers are checked inmin{n,m} steps,
where by a step we mean a comparison of two macro-digits.

When multiplying two integers under the assumption thatm ≤ n (this condition is checked
in 1 step, otherwise the numbers can be multiplied in another order), the number of steps is

O(nm), where by a step we mean multiplication or addition of two macro-digits.
The calculation of the partial quotient of dividing two integer multi-digit numbers may be

done inO(nm ·(|n−m|) steps, where by a step wemeanmultiplication, or addition (subtraction),
or comparison of two macro-digits.

At the same time, students are taught that the estimates obtained coincide with the estimates

of the number of steps of a multi-tape Turing machine that performs the corresponding opera-

tions.

6. CONCLUSION

The paper describes a theoretical justification for the need to use multi-digit numbers (that

is, numbers of arbitrary length that cannot be written as a number of the type integer or longin-
teger) using the Gauss method for matrices with integer coefficients.
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Аннотация

Статья написана на основе части курса "анализ алгоритмов" для студентов кафе-

дры информатики математико-механического факультета Санкт-Петербургского го-

сударственного университета. На примере компьютерной реализации метода Га-

усса проиллюстрирована разница между алгебраической сложностью (числом ари-

фметических операций) обработки целых чисел и вычислительной сложностью, за-

висящей от длины записи входных данных. Доказана формула, задающая увели-

чение длины матричных коэффициентов при реализации метода Гаусса. Показаны

проблемы, возникающие при обработке больших целых чисел, связанные с ‘нарез-

кой" цифр. Для преодоления указанных проблем предлагается возможность исполь-

зования многозначных целых чисел. Показано, что верхние границы числа шагов

при обработке многозначных целых чисел совпадают с такими границами для мно-

голенточной машины Тьюринга.

Ключевые слова: метод Гаусса, вычислительная сложность, вычисления с больши-

ми целыми числами.
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